If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-4u=0
a = 5; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·5·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*5}=\frac{0}{10} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*5}=\frac{8}{10} =4/5 $
| X-3y=80 | | 200=2l+60 | | -(x+23)=5.5 | | 0.5x+2.5=-7.5 | | 90+4x+x-8=180 | | 90+3x+x-8=180 | | 10=2(a+3) | | 2(x-4)+3=3(2x-5)+10-4x | | 2/7y-5/6+5/7y=7/6 | | 2/7y-5/6+5/7=7/6 | | 2/7y-5/6+5/7=11/6 | | 60+4x=20 | | 4g-1=31 | | 6f+3=21 | | 2(e-3)=18 | | 3(x−3)=45 | | x⁄2+2x⁄5=18. | | -7=2x=10 | | 8x=7+x=60 | | 0.3=0.4(m=7) | | 3x2−27x=42 | | 0.99x=10+.89 | | (1+x)+3x=-2(x+1) | | -30=5(x−9) | | 3x-7+x+5=34 | | 0.5551936219055919706209+b^2=10 | | 5x+35=6x+-30 | | x/1134=27/729 | | 5.7/x=5.1/3.2 | | 68/5.5=9/x | | x/6=9/68 | | x/5.5=9/68 |